pytorch 矩阵倒数详细推导
pytorch
本文字数:835 字 | 阅读时长 ≈ 4 min

pytorch 矩阵倒数详细推导

pytorch
本文字数:835 字 | 阅读时长 ≈ 4 min

本文用最小二乘法来简述 PyTorch 中的梯度下降具体执行过程

之前已经推到过最小二乘法的矩阵求导过程:链接

1. 数学形式

之前虽然知道矩阵求导是怎么来的,但是具体 PyTorch 是怎么实现的还未知,所以这里进行了求解和验证,采用了 SGD 梯度下降,为方便计算,batch_size=3,并且采用 一元线性回归来实现,所以这里 w 只有一维 ,带有 bias 偏置

数学表达式为
$$
Y = Xw+b
$$

$$
Y = \begin{pmatrix} y_{1} \ y_{2} \ … \ y_{n} \end{pmatrix}{n\times 1}~~~
X = \begin{pmatrix} x
{1}^{T} \ x_{2}^{T} \ … \ x_{n}^{T} \end{pmatrix}{n\times p}~~~
w = \begin{pmatrix} w
{1} \ w_{2} \ … \ w_{n} \end{pmatrix}_{p\times 1}
$$

注意为了方便下面验证,取一元线性回归,即参数
$$
Y = \begin{pmatrix} y_{1} \ y_{2} \ … \ y_{n} \end{pmatrix}{n\times 1}~~~
X = \begin{pmatrix} x
{1}^{T} \ x_{2}^{T} \ … \ x_{n}^{T} \end{pmatrix}{n\times 1}
\rightarrow \begin{pmatrix} x
{1} \ x_{2} \ … \ x_{n} \end{pmatrix}{n\times 1}~~~
w = \begin{pmatrix} w \end{pmatrix}
{1\times 1}
$$
本来$x^{T}$为$1\times p$的矩阵,即n元,现在改为一元,转置相当于没变化了

接下来给出矩阵求导以及非矩阵求导的公式,这里我们取batch_size=3,即$n=3$

损失函数为:
$$
L = \frac{1}{n} \sum_{i=1}{n}(y_{i}-x_{i}{T}w)^{2}
$$

1.1 矩阵求导

$$
\frac{dL}{dw} = 2\frac{1}{n}X^{T}(Xw-Y)
$$

矩阵求导的时候没有算上偏置$b$,下面非矩阵求导会算上,而且主要是用非矩阵求导的过程来验证PyTorch运行过程,所以不影响

将$n=3$带入得
$$
\begin{aligned}
\frac{dL}{dw} & = 2\frac{1}{n}X^{T}(Xw-Y) \
& = \frac{2}{3}
\begin{pmatrix} x_{1} & x_{2} & x_{3}\end{pmatrix}
(
\begin{pmatrix} x_{1} \ x_{2} \ x_{3}\end{pmatrix}
\begin{pmatrix} w \end{pmatrix} -
\begin{pmatrix} y_{1} \ y_{2} \ y_{3}\end{pmatrix}
) \
& = \frac{2}{3}
\begin{pmatrix} x_{1} & x_{2} & x_{3}\end{pmatrix}
\begin{pmatrix} x_{1}w-y_{1} \ x_{2}w-y_{2} \ x_{3}w-y_{3}\end{pmatrix} \
& = \frac{2}{3}
\begin{pmatrix} x_{1}^{2}w-x_{1}y_{1} \ x_{2}^{2}w-x_{2}y_{2} \ x_{3}^{2}w-x_{3}y_{3}\end{pmatrix}
\end{aligned}
$$

1.1 非矩阵求导

$$
\frac{dL}{dw} = 2\frac{1}{n}(w\sum_{i=1}{n}x_{i}{2} - \sum_{i=1}^{n}(y_{i}-b)x_{i})
$$

将$n=3$带入得
$$
\begin{aligned}
\frac{dL}{dw} & = 2\frac{1}{n}(w\sum_{i=1}{n}x_{i}{2} - \sum_{i=1}^{n}(y_{i}-b)x_{i}) \
& = \frac{2}{3}(w(x_{1}{2}+x_{2}{2}+x_{3}^{2}) - [((y_{1}-b)x_{1})+((y_{2}-b)x_{2})+((y_{3}-b)x_{3})]) \
& = \frac{2}{3}(w(x_{1}{2}+x_{2}{2}+x_{3}^{2}) - [(x_{1}y_{1}-x_{1}b)+(x_{2}y_{2}-x_{2}b)+(x_{3}y_{3}-x_{3}b)]) \
& = \frac{2}{3}(w(x_{1}{2}+x_{2}{2}+x_{3}^{2}) - (x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}) + (x_{1}b+x_{2}b+x_{3}b)) \
\end{aligned}
$$
上述就是对$w$求导的结果,由于$b$相同,直接给出结果
$$
\frac{dL}{db} = \frac{2}{n}(nb - \sum_{i=1}^{n}(y_{i} - wx_{i}))
$$

下面验证时仅针对有偏置$b$的一元线性回归,并且只验证$w$

2. PyTorch

这里我们batch_size=3,随机取输入$x$和$y$分别为

输出为

loss为

$w$的梯度为-150.28

更新前后$w$与$b$的参数为

而学习率为0.001,恰好$-0.34487\times -[0.001*(-150.28)] = -0.19458$

下面我们手动计算进行验证看看是否与上述输出一致

import numpy as np

x = np.array([4.6667, 8.2222, 2.8889])
y = np.array([9.7349, 17.2363, 6.3046])
y_ = np.array([-0.7449, -1.9711, -0.1318])

# 计算loss
f = y_-y
l = np.power(f, 2)
print(l)
l_ = np.sum(l)
print(l_/3)
'''
[109.82620804 368.92421476  41.42724496]
173.39255591999998
'''


# 计算相应参数
print(np.sum(x))
print(np.power(x, 2))
print(x*y)
print(np.sum(np.power(x, 2)))
print(np.sum(x*y))
'''
15.7778
[21.77808889 67.60457284  8.34574321]
[ 45.42985783 141.72030586  18.21335894]
97.72840494
205.36352263000003
'''


# 计算w梯度
gw = (2/3)*((-0.3449 * 97.7284)-(205.3635-15.7778*0.8645))
print(gw)
'''
-150.28674470666664
'''

可以发现我们的计算是一致的

三、执行代码

'''
    torch.optim.SGD
'''

import os
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader


# 1. 创建数据集
def create_linear_data(nums_data, if_plot=False):
    """
    Create data for linear model
    Args:
        nums_data: how many data points that wanted
    Returns:
        x with shape (nums_data, 1)
    """
    x = torch.linspace(2, 10, nums_data)
    x = torch.unsqueeze(x,dim=1)
    k = 2
    y = k * x + torch.rand(x.size())

    if if_plot:
        plt.scatter(x.numpy(),y.numpy(),c=x.numpy())
        plt.show()
    # data = torch.cat([x, y], dim=1)
    datax = x
    datay = y
    return datax, datay


datax, datay = create_linear_data(10, if_plot=False)
length = len(datax)


# 2. Dummy DataSet
class LinearDataset(Dataset):

    def __init__(self, length, datax, datay):
        self.len = length
        self.datax = datax
        self.datay = datay

    def __getitem__(self, index):
        datax = self.datax[index]
        datay = self.datay[index]
        return {'x': datax, 'y': datay}

    def __len__(self):
        return self.len


# 3. Parameters and DataLoaders
batch_size = 3
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
linear_loader = DataLoader(dataset=LinearDataset(length, datax, datay),
                         batch_size=batch_size, shuffle=True)


# 4. model
class Model(torch.nn.Module):
    """
    Linear Regressoin Module, the input features and output
    features are defaults both 1
    """
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, input):
        output = self.linear(input)
        print("In Model: #############################################")
        print("input: ", input.size(), "output: ", output.size())
        return output

model = Model()
# model = torch.nn.DataParallel(model, device_ids=device_ids)
model.cuda()


# 6. loss && optimizer
loss = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)


# 7. train
Linear_loss = []
for i in range(10):
    # print("epoch: %d\n", i)
    for data in linear_loader:
        x, y = data['x'], data['y']
        x = x.cuda()
        y = y.cuda()
        y_pred = model(x)
        lloss = loss(y_pred, y)
        optimizer.zero_grad()
        lloss.backward()
        for param in model.parameters():  # before optimize
            print(param.item())
        optimizer.step()
        for param in model.parameters():  # after optimize
            print(param.item())
        Linear_loss.append(lloss.item())
        print("Out--->input size:", x.size(), "output_size:", y_pred.size())


# 8. plot
loss_len = len(Linear_loss)
axis_x = range(loss_len)
plt.plot(axis_x, Linear_loss)
plt.show()
9月 09, 2024